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ABSTRACT

In complex systems with many degrees of freedom such as peptides and proteins there
exist a huge number of local-minimum-energy states. Conventional simulations in the
canonical ensemble are of little use, because they tend to get trapped in states of these
energy local minima. A simulation in generalized ensemble performs a random walk in
potential energy space and can overcome this difficulty. From only one simulation run, one
can obtain canonical-ensemble averages of physical quantities as functions of temperature
by the single-histogram and/or multiple-histogram reweighting techniques. In this article
we review uses of the generalized-ensemble algorithms in biomolecular systems. Three
well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-
exchange method, are described first. Both Monte Carlo and molecular dynamics versions
of the algorithms are given. We then present three new generalized-ensemble algorithms
which combine the merits of the above methods. The effectiveness of the methods for
molecular simulations in the protein folding problem is tested with short peptide systems.
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1 INTRODUCTION

Despite the great advancement of computer technology in the past decades, simulations
of complex systems such as spin glasses and biopolymers are still greatly hampered by the
multiple-minima problem. It is very difficult to obtain accurate canonical distributions
at low temperatures by conventional Monte Carlo (MC) and molecular dynamics (MD)
methods. This is because simulations at low temperatures tend to get trapped in one of
huge number of local-minimum-energy states. The results thus will depend strongly on
the initial conditions. One way to overcome this multiple-minima problem is to perform
a simulation in a generalized ensemble where each state is weighted by a non-Boltzmann
probability weight factor so that a random walk in potential energy space may be realized.
The random walk allows the simulation to escape from any energy barrier and to sample
much wider phase space than by conventional methods. Monitoring the energy in a
single simulation run, one can obtain not only the global-minimum-energy state but also
canonical ensemble averages as functions of temperature by the single-histogram [1] and/or
multiple-histogram [2, 3] reweighting techniques (an extension of the multiple-histogram
method is also referred to as weighted histogram analysis method (WHAM) [3]).

One of the most well-known generalized-ensemble methods is perhaps multicanonical
algorithm (MUCA) [4, 5] (for a recent review, see Ref. [6]). (The method is also referred
to as entropic sampling [7] and adaptive umbrella sampling [8] of the potential energy
[9]. The mathematical equivalence of multicanonical algorithm and entropic sampling
has been given in Ref. [10].) MUCA and its generalizations have been applied to spin
glass systems (see, e.g., Refs. [11]-[14]). MUCA was also introduced to the molecular
simulation field [15] (for previous reviews of generalized-ensemble approach in the protein
folding problem, see, e.g., Refs. [16]-[18]). Since then MUCA has been extensively used in
many applications in protein and related systems [19]-[45]. Molecular dynamics version of
MUCA has also been developed [27, 28, 9] (see also Refs. [46, 27] for Langevin dynamics
version). Moreover, multidimensional (or multicomponent) extensions of MUCA can be
found in Refs. [26, 30, 34].

While a simulation in multicanonical ensemble performs a free 1D random walk in
potential energy space, that in simulated tempering (ST) [47, 48] (the method is also
referred to as the method of expanded ensemble [47]) performs a free random walk in
temperature space (for a review, see, e.g., Ref. [49]). This random walk, in turn, induces
a random walk in potential energy space and allows the simulation to escape from states
of energy local minima. ST has also been applied to protein folding problem [50]-[53].

A third generalized-ensemble algorithm that is related to MUCA is 1/k-sampling [54].
A simulation in 1/k-sampling performs a free random walk in entropy space, which, in
turn, induces a random walk in potential energy space. The relation among the above
three generalized-ensemble algorithms was discussed and the effectiveness of the three
methods in protein folding problem was compared [52].

The generalized-ensemble method is powerful, but in the above three methods the
probability weight factors are not a priori known and have to be determined by iterations
of short trial simulations. This process can be non-trivial and very tedius for complex
systems with many local-minimum-energy states. Therefore, there have been attempts to
accelerate the convergence of the iterative process for MUCA [11, 26, 55, 56, 57, 9] (see
also Ref. [6]).

A new generalized-ensemble algorithm that is based on the weight factor of Tsallis sta-



tistical mechanics [58] was recently developed with the hope of overcoming this difficulty
[59, 60], and the method was applied to a peptide folding problem [61, 62]. A similar but
slightly different formulation is given in Ref. [63]. See also Ref. [64] for a combination of
Tsallis statistics with simulated tempering. (Optimization problems were also addressed
by simulated annealing algorithms [65] based on the Tsallis weight in Refs. [66]-[68].
For reviews of molecular simulations based on Tsallis statistics, see, e.g., Refs. [69]-[71].)
In this generalized ensemble the weight factor is known, once the value of the global-
minimum energy is given [59]. The advantage of this ensemble is that it greatly simplifies
the determination of the weight factor. However, the estimation of the global-minimum
energy can still be very difficult.

In the replica-exchange method (REM) [72]-[74], the difficulty of weight factor deter-
mination is greatly alleviated. (Closely related methods were independently developed in
Refs. [75]-][77]. REM is also referred to as multiple Markov chain method [78] and parallel
tempering [49]. Details of literature about REM and related algorithms can be found in a
recent review [79].) In this method, a number of non-interacting copies (or replicas) of the
original system at different temperatures are simulated independently and simultaneously
by the conventional MC or MD method. Every few steps, pairs of replicas are exchanged
with a specified transition probability. The weight factor is just the product of Boltzmann
factors, and so it is essentially known.

REM has already been used in many applications in protein systems [80, 81, 53, 82,
83, 84, 85]. Systems of Lennard-Jones particles have also been studied by this method in
various ensembles [86]-[89]. Moreover, REM was applied to cluster studies in quantum
chemistry field [90]. The details of molecular dynamics algorithm have been worked out
for REM [82] (see also Refs. [80, 91]). We then developed a multidimensional REM which
is particularly useful in free energy calculations [84] (see also Refs. [92, 86, 93]).

However, REM also has a computational difficulty: As the number of degrees of
freedom of the system increases, the required number of replicas also greatly increases,
whereas only a single replica is simulated in MUCA or ST. This demands a lot of computer
power for complex systems. Our solution to this problem is: Use REM for the weight
factor determinations of MUCA or ST, which is much simpler than previous iterative
methods of weight determinations, and then perform a long MUCA or ST production
run. The first example is the replica-exchange multicanonical algorithm (REMUCA) [94].
In REMUCA, a short replica-exchange simulation is performed, and the multicanonical
weight factor is determined by the multiple-histogram reweighting techniques [2, 3]. An-
other example of such a combination is the replica-ezchange simulated tempering (REST)
[95]. In REST, a short replica-exchange simulation is performed, and the simulated tem-
pering weight factor is determined by the multiple-histogram reweighting techniques [2, 3].

We have introduced a further extension of REMUCA, which we refer to as multi-
canonical replica-exchange method (MUCAREM) [94]. In MUCAREM, the multicanonical
weight factor is first determined as in REMUCA, and then a replica-exchange multicanon-
ical production simulation is performed with a small number of replicas.

In this article, we describe the six generalized-ensemble algorithms mentioned above.
Namely, we first review three familiar methods: MUCA, ST, and REM. We then present
the three new algorithms: REMUCA, REST, and MUCAREM. The effectiveness of these
methods is tested with short peptide systems.



2 GENERALIZED-ENSEMBLE ALGORITHMS

2.1 Multicanonical Algorithm and Simulated Tempering

Let us consider a system of N atoms of mass my (k = 1,---, N) with their coordinate
vectors and momentum vectors denoted by ¢ = {q;,---,qy} and p = {py, -, Py},
respectively. The Hamiltonian H(q,p) of the system is the sum of the kinetic energy
K(p) and the potential energy E(q):

H(q,p) = K(p) + E(q) , (1)

where N )
K(p) =Y 75 2)

k=1 <"

In the canonical ensemble at temperature T each state x = (g, p) with the Hamiltonian
H(q,p) is weighted by the Boltzmann factor:

Wia:T) = e 100 3

where the inverse temperature 3 is defined by 5 = 1/kgT (kg is the Boltzmann constant).
The average kinetic energy at temperature 7' is then given by

(K= (3 p—> Nkt ()

i1 21

Because the coordinates ¢ and momenta p are decoupled in Eq. (1), we can suppress
the kinetic energy part and can write the Boltzmann factor as

Wa(z;T) = Wy(E; T) = e 7% (5)

The canonical probability distribution of potential energy Pg(E;T) is then given by the
product of the density of states n(E) and the Boltzmann weight factor Wg(E; T):

Py(E;T) o n(E)Ws(E;T) . (6)

Since n(F) is a rapidly increasing function and the Boltzmann factor decreases expo-
nentially, the canonical ensemble yields a bell-shaped distribution which has a maximum
around the average energy at temperature 7'. The conventional MC or MD simulations at
constant temperature are expected to yield Pg(E;T), but, in practice, it is very difficult
to obtain accurate canonical distributions of complex systems at low temperatures by
conventional simulation methods. This is because simulations at low temperatures tend
to get trapped in one or a few of local-minimum-energy states.

In the multicanonical ensemble (MUCA) [4, 5], on the other hand, each state is
weighted by a non-Boltzmann weight factor Wy, (£) (which we refer to as the multi-
canonical weight factor) so that a uniform energy distribution P,,,(E) is obtained:

Puu(E) x n(E)Wph,(E) = constant . (7)

The flat distribution implies that a free random walk in the potential energy space is real-
ized in this ensemble. This allows the simulation to escape from any local minimum-energy

4



states and to sample the configurational space much more widely than the conventional
canonical MC or MD methods.
From the definition in Eq. (7) the multicanonical weight factor is inversely proportional
to the density of states, and we can write it as follows:
1
Wmu E = efﬁOEmu(EfTO) — , 8
() T (¥
where we have chosen an arbitrary reference temperature, Ty = 1/kp(3y, and the “multi-
canonical potential energy” is defined by

Euu(E:Ty) = kpTpInn(E) = ThS(E) . (9)

Here, S(FE) is the entropy in the microcanonical ensemble. Since the density of states of
the system is usually unknown, the multicanonical weight factor has to be determined
numerically by iterations of short preliminary runs [4, 5| as described in detail below.

A multicanonical Monte Carlo simulation is performed, for instance, with the usual
Metropolis criterion [96]: The transition probability of state  with potential energy E to
state 2’ with potential energy E’ is given by

~n_ )1, for AE,, <0,
wlz =) = { exp (—BoAEmy) , for ABy, >0, (10)
where
AEmu = mu(E/; TO) - Emu(E; TO) . (11)

The molecular dynamics algorithm in multicanonical ensemble also naturally follows from
Eq. (8), in which the regular constant temperature molecular dynamics simulation (with
T = Ty) is performed by solving the following modified Newton equation: [27, 28, 9]

D, — = 12
Dy g, oF i ( )

where f, is the usual force acting on the k-th atom (k = 1,---, N). From Eq. (9) this
equation can be rewritten as
: To
= —= 13
where the following thermodynamic relation gives the definition of the “effective temper-
ature” T(E):

St — (14)

with
Ea = <E>T(Ea) . (15)

The multicanonical weight factor is usually determined by iterations of short trial
simulations. The details of this process are described, for instance, in Refs. [11, 22]. For
the first run, a canonical simulation at a sufficiently high temperature T} is performed,
i.e., we set

mu

{ E(l)(E§TO) = b, (16)
WW(E:T,)) = Ws(E;Ty) = exp(—HE) .
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We define the maximum energy value E,,., under which we want to have a flat energy
distribution by the average potential energy at temperature Tj:

Epnax =< E >7p . (17)

Above E,, .« we have the canonical distribution at 7" = 7. In the /-th iteration a simula-
tion with the weight W9 (E; Ty) = exp (—BOEI(IQ(E; T0)> is performed, and the histogram

NU(E) of the potential energy distribution P{)(E) is obtained. Let EY) be the lowest-
energy value that was obtained throughout the preceding iterations including the present
simulation. The multicanonical potential energy for the (¢ + 1)-th iteration is then given

by

E 9 for &/ Z Emax7
) ()
ECD (B Ty) = Er(f&((zﬂ)To) +kpToln NO(E) — 9, for Epin < B < Emax,
mu A OB (£ Ty) 0 (+1)( ) . )
(E - Emin) + Emu (Emin’ TO)? for £ < Emim
OF E=EY)
(18)
where the constant ¢¥ is introduced to ensure the continuity at £ = E,., and we have
9 = kpTyIn N9(Epay) - (19)

We iterate this process until the obtained energy distribution becomes reasonably flat,
say, of the same order of magnitude, for £ < F,,... When the convergence is reached, we
should have that Er(fl)n is equal to the global-minimum potential energy value.

It is also common especially when working in MD algorithm to use polynomials and
other smooth functions to fit the histograms during the iterations [23, 28, 9]. We have
shown that the cubic spline functions work well [94].

However, the iterative process can be non-trivial and very tedius for complex systems,
and there have been attempts to accelerate the convergence of the iterative process [11,
26, 55, 56, 57, 9].

After the optimal multicanonical weight factor is determined, one performs a long
multicanonical simulation once. By monitoring the potential energy throughout the sim-
ulation, one can find the global-minimum-energy state. Moreover, by using the obtained
histogram Np,,(E) of the potential energy distribution P,,(E) the expectation value of a
physical quantity A at any temperature 7' = 1/kg/f3 is calculated from

zEj A(E) n(E) e PP

Z n(E) e P ’

E

< A>r=

(20)

where the best estimate of the density of states is given by the single-histogram reweighting
techniques (see Eq. (7)) [1]:
N (E)

W (E)
In the numerical work, we want to avoid round-off errors (and overflows and underflows)
as much as possible. It is usually better to combine exponentials as follows (see Eq. (8)):

Z A(E) Nmu(E) 6'30Em“(E;T0)_ﬂE

E
Z Nmu(E) ePoEmu(EiTo)—BE
E

n(E) = (21)

<A>p= (22)
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We now briefly review the original simulated tempering (ST) method [47, 48]. In this
method temperature itself becomes a dynamical variable, and both the configuration and
the temperature are updated during the simulation with a weight:

Wer(E;T) = e PPra@ | (23)

where the function a(7") is chosen so that the probability distribution of temperature is
flat:
Psp(T) = / dE n(E) Wer(E;T) = / dE n(E) e PB+aT) = constant . (24)

Hence, in simulated tempering the temperature is sampled uniformly. A free random walk
in temperature space is realized, which in turn induces a random walk in potential energy
space and allows the simulation to escape from states of energy local minima.

In the numerical work we discretize the temperature in M different values, T,, (m =
1,---, M). Without loss of generality we can order the temperature so that T3 < T, <
-+« < Ty. The lowest temperature 77 should be sufficiently low so that the simulation
can explore the global-minimum-energy region, and the highest temperature Ty, should
be sufficiently high so that no trapping in an energy-local-minimum state occurs. The
probability weight factor in Eq. (23) is now written as

Wer(E; Ty,) = e PmEram (25)

where a,, = a(T,,) (m =1,---, M). The parameters a,, are not known a priori and have
to be determined by iterations of short simulations. This process can be non-trivial and
very difficult for complex systems. Note that from Eqs. (24) and (25) we have

e x /dE n(E) e Pm¥ (26)

The parameters a,, are therefore “dimensionless” Helmholtz free energy at temperature
T,, (i.e., the inverse temperature (3,, multiplied by the Helmholtz free energy).

Once the parameters a,, are determined and the initial configuration and the initial
temperature 7T, are chosen, a simulated tempering simulation is then realized by alter-
nately performing the following two steps [47, 48]:

1. A canonical MC or MD simulation at the fixed temperature T,, is carried out for a
certain MC or MD steps.

2. The temperature T), is updated to the neighboring values 7,,+; with the configura-
tion fixed. The transition probability of this temperature-updating process is given
by the Metropolis criterion (see Eq. (25)):

1, for A <0,
W(Tn = Tinar) = { exp(=A), for A>0, (27)
where
A= (ﬁmil - ﬁm) E— (amil - am) . (28)

Note that in Step 2 we exchange only pairs of neighboring temperatures in order to secure
sufficiently large acceptance ratio of temperature updates.



As in multicanonical algorithm, the simulated tempering parameters a,, = a(T,,)
(m = 1,---, M) are also determined by iterations of short trial simulations (see, e.g.,
Refs. [49, 50, 52] for details). Here, we give the one in Ref. [52].

During the trial simulations we keep track of the temperature distribution as a his-
togram N, = N(T,,) (m=1,---, M).

1. Start with a short canonical simulation (i.e., a,, = 0) updating only configurations
at temperature T,, = T); (we initially set the temperature label m to M) and
calculate the average potential energy < E >p,,. Here, the histogram N, will have
non-zero entry only for n =m = M.

2. Calculate new parameters a,, according to

—InN, , for m<n<M,
an =1 an— < E>r. (Bn-1—Bm) , for n=m-—1, (29)
—00 , for n<m-—1.

This weight implies that the temperature will range between T),,_; and T),.

3. Start a new simulation, now updating both configurations and temperatures, with
weight Wer(E; T,) = e PnF+an and sample the distribution of temperatures T), in
the histogram N,, = N(T},). For T' = T,,_; calculate the average potential energy
< F > Tt

4. If the histogram N, is approximately flat in the temperature range 7}, _1 < T, < Ty,
set m = m — 1. Otherwise, leave m unchanged.

5. Iterate the last three steps until the obtained temperature distribution N,, becomes
flat over the whole temperature range [T7, Th].

After the optimal simulated tempering weight factor is determined, one performs a long
simulated tempering run once. From the results of this production run, one can obtain
the canonical ensemble average of a physical quantity A as a function of temperature
from Eq. (20), where the density of states is given by the multiple-histogram reweighting
techniques [2, 3] as follows. Let N,,(E) and n,, be respectively the potential-energy
histogram and the total number of samples obtained at temperature T, = 1/kgf,, (m =
1,-+-, M). The best estimate of the density of states is then given by [2, 3]

n(E) = —2= : (30)

where
e fm =3 n(E) et (31)
E
Here, g,, = 1 + 27,,, and 7, is the integrated autocorrelation time at temperature 7T,,.
Note that Eqgs. (30) and (31) are solved self-consistently by iteration [2, 3] to obtain the
dimensionless Helmholtz free energy f,,, (and the density of states n(E)). We remark that



in the numeraical work, it is often more stable to use the following equations instead of
Egs. (30) and (31):

M
Y 9 Na(E)
Py(E;T) = n(E)e F = —m=! , (32)
S g7t ny, efn(Bn-PE
m=1

where
e fm =3" Pa(E;T,) . (33)
E

The equations are solved iteratively as follows. We can set all the f,, (m =1,---, M) to,
e.g., zero initially. We then use Eq. (32) to obtain Pg(F;T,,) (m =1,---, M), which are
substituted into Eq. (33) to obtain next values of f,,, and so on.

2.2 Replica-Exchange Method

The replica-exchange method (REM) [72]-[75] was developed as an extension of simulated
tempering [72] (thus it is also referred to as parallel tempering [49]) (see, e.g., Ref. [82]
for a detailed description of the algorithm). The system for REM consists of M non-
interacting copies (or, replicas) of the original system in the canonical ensemble at M
different temperatures 7,, (m = 1,---,M). We arrange the replicas so that there is
always exactly one replica at each temperature. Then there is a one-to-one correspondence

between replicas and temperatures; the label i (i = 1,-- -, M) for replicas is a permutation
of the label m (m =1,---, M) for temperatures, and vice versa:
i = im) = f(m)
{ m o= mG) = 1) . (34)

where f(m) is a permutation function of m and f~1(7) is its inverse.

Let X = {:E[f(l)], e ,x%M)}} = {xg](l), e 7%2{]1\4)} stand for a “state” ‘in this general-
ized ensemble. The state X is specified by the M sets of coordinates ¢l and momenta
pl of N atoms in replica i at temperature T},

il = (d%p") (35)

Because the replicas are non-interacting, the weight factor for the state X in this
generalized ensemble is given by the product of Boltzmann factors for each replica (or at
each temperature):

M M
WreMm(X) = exp {—Z By H (qm,pm)} = exp {— Z B H (q[z(m)Lp[z(m)})} . (36)
i=1 m=1

where i(m) and m(i) are the permutation functions in Eq. (34).
We now consider exchanging a pair of replicas in the generalized ensemble. Suppose
we exchange replicas ¢ and j which are at temperatures T}, and T,,, respectively:

X:{...,xm’... 2l }_> X’:{~-- o } , (37)

»yn rYm ’rn )
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Here, i, j, m, and n are related by the permutation functions in Eq. (34), and the exchange
of replicas introduces a new permutation function f’:

i = f(m) — j=fm),
{ i o= fn) —i=f(n). (38)

The exchange of replicas can be written in more detail as

gl = (q[i}yp[i]) — bl = (Q[j],p[j]/)

zbl = (q[j],p[j]) — gl = (q[i]’p[i}/) , (39)
where the definitions for pl¥ and plV will be given below. We remark that this process is
equivalent to exchanging a pair of temperatures 7,,, and T}, for the corresponding replicas
7 and j as follows:

{ x% — (q[i}’p[i]> — l‘ml = (qm pm) ) (40)

2l = (W, pl) s alll = (gl ph)

In the original implementation of the replica-ezchange method (REM) [72]-[75], Monte
Carlo algorithm was used, and only the coordinates ¢ (and the potential energy function
E(q)) had to be taken into account. In molecular dynamics algorithm, on the other
hand, we also have to deal with the momenta p. We proposed the following momentum
assignment in Eq. (39) (and in Eq. (40)) [82]:

| [T, .
p[l]/ = T_ p[ ] s
3 (41)

]

, T,
b =,/
p - T p Y

n

which we believe is the simplest and the most natural. This assignment means that we
just rescale uniformly the velocities of all the atoms in the replicas by the square root of
the ratio of the two temperatures so that the temperature condition in Eq. (4) may be
satisfied.

In order for this exchange process to converge towards an equilibrium distribution,
it is sufficient to impose the detailed balance condition on the transition probability
w(X — X'):

From Egs. (1), (2), (36), (41), and (42), we have

LI e { [ () + 8 (@)] - 0 [K (6) + B (4]
0 8 )+ 4] 1 (57) + £ @)}
- { gm_K< )~ B K (p M)w K( ) 4+ 8K (o)
—exp(_AﬂSn [E () — £ (¢1)] - 5. [E E (@]},

(43)
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where
A= (By—Bm) (E(d") — E(¢7)) , (44)

and 4, j, m, and n are related by the permutation functions (in Eq. (34)) before the

exchange:
i =f(m),
{j = f(n) )

This can be satisfied, for instance, by the usual Metropolis criterion [96]:

1, for A<O0,

exp(—A) , for A>0, (46)

w(X — X) Ew(xﬂ ‘ ng}) = {
where in the second expression (i.e., w(zld|zl])) we explicitly wrote the pair of replicas
(and temperatures) to be exchanged. Note that this is exactly the same criterion that
was originally derived for Monte Carlo algorithm [72]-[75].

Without loss of generality we can again assume T} < Ty < --- < T)s. A simulation of
the replica-exchange method (REM) [72]-[75] is then realized by alternately performing
the following two steps:

1. Each replica in canonical ensemble of the fixed temperature is simulated stmultaneously
and 1ndependently for a certain MC or MD steps.
(41

2. A pair of replicas at neighboring temperatures, say zl! and . oy

with the probability w (x%l } xﬂrl) in Eq. (46).

1, are exchanged

Note that in Step 2 we exchange only pairs of replicas corresponding to neighboring tem-
peratures, because the acceptance ratio of the exchange process decreases exponentially
with the difference of the two s (see Egs. (44) and (46)). Note also that whenever a
replica exchange is accepted in Step 2, the permutation functions in Eq. (34) are updated.

The REM simulation is particularly suitable for parallel computers. Because one can
minimize the amount of information exchanged among nodes, it is best to assign each
replica to each node (exchanging pairs of temperature values among nodes is much faster
than exchanging coordinates and momenta). This means that we keep track of the per-
mutation function m(i;t) = f~1(i;t) in Eq. (34) as a function of MC or MD step ¢ during
the simulation. After parallel canonical MC or MD simulations for a certain steps (Step
1), M/2 pairs of replicas corresponding to neighboring temperatures are simulateneously
exchanged (Step 2), and the pairing is alternated between the two possible choices, i.e.,
(T, Ty), (T5,Ty), --- and (T3, T3), (Ty,T5), - - -.

The major advantage of REM over other generalized-ensemble methods such as multi-
canonical algorithm [4, 5] and simulated tempering [47, 48] lies in the fact that the weight
factor is a priori known (see Eq. (36)), while in the latter algorithms the determination of
the weight factors can be very tedius and time-consuming. A random walk in “tempera-
ture space” is realized for each replica, which in turn induces a random walk in potential
energy space. This alleviates the problem of getting trapped in states of energy local
minima. In REM, however, the number of required replicas increases as the system size
N increases (according to v/N) [72]. This demands a lot of computer power for complex
systems.
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2.3 Replica-Exchange Multicanonical Algorithm and Replica-
Exchange Simulated Tempering

The replica-exchange multicanonical algorithm (REMUCA) [94] overcomes both the dif-
ficulties of MUCA (the multicanonical weight factor determination is non-trivial) and
REM (a lot of replicas, or computation time, is required). In REMUCA we first perform
a short REM simulation (with M replicas) to determine the multicanonical weight factor
and then perform with this weight factor a regular multicanonical simulation with high
statistics. The first step is accomplished by the multiple-histogram reweighting techniques
2, 3]. Let N,,(F) and n,, be respectively the potential-energy histogram and the total
number of samples obtained at temperature 7T}, = 1/kgf3,, of the REM run. The density
of states n(F) is then given by solving Eqs. (30) and (31) self-consistently by iteration
2, 3].

Once the estimate of the density of states is obtained, the multicanonical weight factor
can be directly determined from Eq. (8) (see also Eq. (9)). Actually, the multicanonical
potential energy, En.(F;Ty), thus determined is only reliable in the following range:

E\<E<Ey, (47)

where
By = <BE>p
Ey = <FE >Tor s
and T} and T}, are respectively the lowest and the highest temperatures used in the REM
run. Outside this range we extrapolate the multicanonical potential energy linearly:

(48)

OEm(E:Th
OB (B Th) (E— Ey) + Exu(Ey;Ty) . for E < Ey,
OF .
EVNE) = { BB Ty) for By < E < Ey,  (49)
Euu(E; T,
M (E — EM) + Emu(EM;TO) , for £ > EM
OF oy,

The multicanonical MC and MD runs are then performed with the Metropolis criterion
of Eq. (10) and with the Newton equation in Eq. (12), respectively, in which &% (F)
in Eq. (49) is substituted into Ep,(E;Ty). We expect to obtain a flat potential energy
distribution in the range of Eq. (47). Finally, the results are analyzed by the single-
histogram reweighting techniques as described in Eq. (21) (and Eq. (20)).

Some remarks are now in order. From Egs. (9), (14), (15), and (48), Eq. (49) becomes

Ti T
TO(E — B +TS(Ey) = ?OE + constant , for B < By =< E >,
1 1
EVNE)={ T)S(E) , for By < E < Eyy,
Ti T
—Y(FE — Ex) 4+ TyS(Ey) = =2F + constant , for E > Ey =< E >p,,.
TM TM
(50)
The Newton equation in Eq. (12) is then written as (see Eqgs. (13), (14), and (15))
Ti
?0 fi s for £ < Ejy,
. 0
T
il fr, for B> Ey.
Ty
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Because only the product of inverse temperature § and potential energy E enters in the
Boltzmann factor (see Eq. (5)), a rescaling of the potential energy (or force) by a constant,
say «, can be considered as the rescaling of the temperature by a~! [27, 91]. Hence, our
choice of EI%(E) in Eq. (49) results in a canonical simulation at T = T} for E < Ej, a
multicanonical simulation for F; < F < E);, and a canonical simulation at T" = T}, for
E > E,;. Note also that the above arguments are independent of the value of Ty, and we
will get the same results, regardless of its value.

Finally, although we did not find any difficulty in the case of protein systems that
we studied, a single REM run in general may not be able to give an accurate estimate
of the density of states (like in the case of a strong first-order phase transition [72]). In
such a case we can still greatly simplify the process of the multicanonical weight factor
determination by combining the present method with the previous iterative methods
[11, 22, 26, 55, 56, 57, 9].

We finally present the new method which we refer to as the replica-exchange simulated
tempering (REST) [95]. In this method, just as in REMUCA, we first perform a short
REM simulation (with M replicas) to determine the simulated tempering weight factor
and then perform with this weight factor a regular ST simulation with high statistics.
The first step is accomplished by the multiple-histogram reweighting techniques [2, 3],
which give the dimensionless Helmholtz free energy f,, (see Egs. (30) and (31)).

Once the estimate of the dimensionless Helmholtz free energy f,, are obtained, the
simulated tempering weight factor can be directly determined by using Eq. (25) where we
set a,, = fn (compare Eq. (26) with Eq. (31)). A long simulated tempering run is then
performed with this weight factor. Let N,,(E) and n,, be respectively the potential-energy
histogram and the total number of samples obtained at temperature 7,, = 1/kg[3,, from
this simulated tempering run. The multiple-histogram reweighting techniques of Eqgs. (30)
and (31) can be used again to obtain the best estimate of the density of states n(E). The
expectation value of a physical quantity A at any temperature T (= 1/kgf3) is then
calculated from Eq. (20).

The formulations of REMUCA and REST are simple and straightforward, but the
numerical improvement is great, because the weight factor determination for MUCA and
ST becomes very difficult by the usual iterative processes for complex systems.

2.4 Multicanonical Replica-Exchange Method

In the previous subsection we presented a new generalized-ensemble algorithm, REMUCA,
that combines the merits of replica-exchange method and multicanonical algorithm. In
REMUCA a short REM simulation with M replicas are first performed and the results
are used to determine the multicanonical weight factor, and then a regular multicanon-
ical production run with this weight is performed. The number of replicas, M, that is
required in the first step should be set minimally as long as a random walk between the
lowest-energy region and the high-energy region is realized. This number can still be very
large for complex systems. This is why the (multicanonical) production run in REMUCA
is performed with a “single replica.” While multicanonical simulatoins are usually based
on local updates, a replica-exchange process can be considered to be a global update, and
global updates enhance the sampling further. Here, we present a further modification of
REMUCA and refer to the new method as multicanonical replica-exchange method (MU-
CAREM) [94]. In MUCAREM the final production run is not a regular multicanonical
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simulation but a replica-exchange simulation with a few replicas, say M replicas, in the
multicanonical ensemble. (We remark that replica-exchange simulations based on the
generalized ensemble with Tsallis weights were introduced in Ref. [80].) Because multi-
canonical simulations cover much wider energy ranges than regular canonical simulations,
the number of required replicas for the production run of MUCAREM is much less than
that for the regular REM (M < M), and we can keep the merits of REMUCA (and
improve the sampling further).

The details of MUCAREM are as follows. As in REMUCA, we first perform a short
REM simulation with M replicas with M different temperatures (we order them as 77 <
Ty < --- < Ty) and obtain the best estimate of the density of states n(E) in the whole
energy range of interest (see Eq. (47)) by the multiple-histogram reweighting techniques
of Egs. (30) and (31). We then choose a number M (M < M) and assign M pairs
of temperatures (Tém},T}{Im}) (m = 1,---,M). Here, we assume that Tém} < T}{Im}
and arrange the temperatures so that the neighboring regions covered by the pairs have
sufficient overlaps. In particular, we set Tél} =T and TI_{IM} = Ty We then define the
following quantities:

gimt — < E>_im
{ ( h (52)

El{{m} = <E>T}{1m} , (m=1,--- M)

We also choose M (arbitrary) temperatures 7,,, (m = 1,---, M) and assign the following
multicanonical potential energies:

Emu E7 Tm m m m
L (E - EE }> + Emu(EE }aTm) ) for £ < EI{, }7
aE E:Eém}
EMNE) = Eua( B Th) for E™ < E < Ef™,
OFm (B Tom) (E— ES) 4 Emi(EE™.T,) | for E > EI™,
OF E—gim

(53)
where E,,,(E;T) is the multicanonical potential energy that was determined for the whole

energy range of Eq. (47). As remarked around Eq. (50), our choice of £I™}(E) in Eq. (53)
{

results in a canonical simulation at 7" = TLm} for £ < EIEm}, a multicanonical simulation
for EI™ < E < E{™ and a canonical simulation at T = T{™ for E > E{™,

The production run of MUCAREM is a replica-exchange simulation with M replicas
with M different temperatures T}, and multicanonical potential energies £I™} (E). By fol-
lowing the same derivation that led to the original REM, we have the following transition
probability of replica exchange of neighboring temperatures (see Egs. (44) and (46)):

[4] [5] . 1 s for A S 0 y
w(xm ‘xmﬂ)_{exp(—A) , for A>0, (54)

where

A = B {5 (B (a)) = €t (B (a7)) )= {07 (B (o)) = €6 (£ (d7)) } -
(55)

Note that we need to newly evaluate the multicanonical potential energy, Erg’}}(E(qm))

and M E(¢)), because £ (E) and €17 (E) are, in general, different functions for
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m # n. We remark that the same additional evaluation of the potential energy is necessary
for the multidimensional replica-exchange method [84].

For obtaining the canonical distributions, the multiple-histogram reweighting tech-
niques [2, 3] are again used. Let N,,(F) and n,, be respectively the potential-energy
histogram and the total number of samples obtained at T,, with the multicanonical po-
tential energy E™H(E) (m = 1,---, M). The expectation value of a physical quantity A
at any temperature 7' = 1/kg( is then obtained from Eq. (20), where the best estimate
of the density of states is given by solving the multiple-histogram reweighting equations,
which now read

M
Y 9! Nim(E)
m=1

n(E) = — (56
m=1
and
e_fm — Z n(E) e_ﬂmgr{r:lr:}(E) X (57)
E

3 EXAMPLES OF SIMULATION RESULTS

We now present some examples of the simulation results by the algorithms described in
the previous section. A few short peptide systems were considered.

For Monte Carlo simulations, the potential energy parameters were taken from ECEPP /2
[97]-[99]. The generalized-ensemble algorithms were implemented in the computer code
KONF90 [100, 101] for the actual simulations. Besides gas phase simulations, various
solvation models have been incorporated. The simplest one is the sigmoidal, distance-
dependent dielectric function [102, 103]. The explicit form of the function we used is
given in Ref. [104], which is a slight modification of the one in Ref. [105]. A second (and
more accurate) model that represents solvent contributions is the term proportional to
the solvent-accessible surface area of solute molecule. The parameters we used are those
of Ref. [106]. For the calculation of solvent-accessible surface area, we used the computer
code NSOL [107], which is based on the code NSC [108]. The third (and most rigorous)
method that represents solvent effects is based on the reference interaction site model
(RISM) [109]-[111]. The model of water molecule that we adopted is the SPC/E model
[112]. A robust and fast algorithm for solving RISM equations was recently developed
[113, 114}, which we employed in our calculations [115, 116, 45].

For molecular dynamics simulations, the force-field parameters were taken from the all-
atom versions of AMBER [117]-[119]. The computer code developed in Refs. [120, 121],
which is based on PRESTO [122], was used. The unit time step was set to 0.5 fs. The
temperature during the canonical MD simulations was controlled by the constraint method
[123, 124]. Besides gas phase simulations, we have also performed MD simulations with
explicit water molecules of TIP3P model [125].

As described in detail in the previous section, in generalized-ensemble simulations
and subsequent analyses of the data, potential energy distributions have to be taken as
histograms. For the bin size of these histograms, we used the values ranging from 0.5 to
2 kecal/mol, depending on the system studied.
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We first illustrate how effectively generalized-ensemble simulations can sample the
configurational space compared to the conventional simulations in the canonical ensem-
ble. It is known by experiments that the system of a 17-residue peptide fragment from
ribonuclease T1 tends to form a-helical conformations [126]. We have performed both a
canonical MC simulation of this peptide at a low temperature (7" = 200 K) and a multi-
canonical MC simulation [127]. In Figure 1 we show the time series of potential energy
from these simulations.
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Figure 1: Time series (from 120,000 MC sweeps to 300,000 MC sweeps) of potential
energy of the peptide fragment of ribonuclease T1 from (a) a conventional canonical MC
simulation at 7' = 200 K and (b) a multicanonical MC simulation.

We see that the canonical simulation thermalizes very slowly. On the other hand, the
MUCA simulation indeed performed a random walk in potential energy space covering a
very wide energy range. Four conformations chosen during this period (from 120,000 MC
sweeps to 300,000 MC sweeps) are shown in Figure 2 for the canonical simulation and
in Figure 3 for the MUCA simulation. We see that the MUCA simulation samples much
wider conformational space than the conventional canonical simulation.

The next examples of the systems that we studied by multicanonical MC simulations
are homo-oligomer systems. We studied the helix-forming tendencies of three amino-acid
homo-oligomers of length 10 in gas phase [21, 22] and in aqueous solution (the solvent
effects are represented by the term that is proportional to solvent-accessible surface area)
[43]. Three characteristic amino acids, alanine (helix former), valine (helix indifferent),
and glycine (helix breaker) were considered. In Figure 4 the lowest-energy conformations
obtained both in gas phase and in aqueous solution by MUCA simulations are shown [43].
The lowest-energy conformations of (Ala)yg (Figures 4(a) and 4(b)) have six intrachain
backbone hydrogen bonds that characterize the a-helix and are indeed completely helical.
Those of (Val)yy (Figures 4(c) and 4(d)) are also in almost ideal helix state (from residue
2 to residue 9 in gas phase and from residue 2 to residue 8 in aqueous solution). On the
other hand, those of (Gly)jo (Figures 4(e) and 4(f)) are not helical and rather round.

We calculated the average values of the total potential energy and its component terms
of (Ala)g as a function of temperature both in gas phase and in aqueous solution [43]. The
results are shown in Figure 5. For homo-alanine in gas phase, all the conformational energy
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Figure 2: Typical snapshots from the canonical MC simulation of Figure 1(a). The figures
were created with Molscript [128] and Raster3D [129, 130].
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(d)
(©)

Figure 3: Typical snapshots from the multicanonical MC simulation of Figure 1(b). The
figures were created with Molscript [128] and Raster3D [129, 130].

18



(e) ()

Figure 4: The lowest-energy conformations of (Ala)yo ((a) and (b)), (Val)io ((c) and (d)),
and (Gly)io ((e) and (f)) obtained from the multicanonical MC simulations in gas phase
and in aqueous solution, respectively. The figures were created with Molscript [128] and
Raster3D [129, 130].
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terms increase monotonically as temperature increases. The changes of each component
terms are very small except for the Lennard-Jones term FE\, indicating that E, plays an
important role in the folding of homo-alanine [22].
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Figure 5: Average of the total potential energy Fi.; and averages of its component terms,
electrostatic energy E., hydrogen-bond energy FEy, Lennard-Jones energy F., torsion en-
ergy Fi, and solvation free energy Eg, (only for the case in aqueous solution) for homo-
alanine as a function of temperature 7" (a) in gas phase and (b) in aqueous solution. The
values for each case were calculated from one multicanonical production run of 1,000,000
MC sweeps by the single-histogram reweighting techniques.

In aqueous solution the overall behaviors of the conformational energy terms are very
similar to those in gas phase. The solvation term, on the other hand, decreases mono-
tonically as temperature increases. These results imply that the solvation term favors
random-coil conformations, while the conformational terms favor helical conformations.

The rapid changes (decrease for the solvation term and increase for the rest of the
terms) of all the average values occur at the same temperature (around at 420 K in gas
phase and 340 K in solvent). We thus calculated the specific heat for (Ala);o as a function
of temperature. The specific heat here is defined by the following equation:

2
E2, >7 —< Bt >1
N Y

() =g = (59
where N (= 10) is the number of residues in the oligomer. In Figure 6 we show the results.
We observe sharp peaks in the specific heat for both environment. The temperatures at
the peak, helix-coil transition temperatures, are T, ~ 420 K and 340 K in gas phase and
in aqueous solution, respectively.

We calculated the average number of helical residues < n >7 in a conformation as a
function of temperature. In Figure 7 we show this quantity as a function of temperature
for the three homo-oligomers in aqueous solution. The average helicity tends to decrease
monotonically as the temperature increases because of the increased thermal fluctuations.

At T = 200 K, < n >7 for homo-alanine is 8. If we neglect the terminal residues,
in which a-helix tends to be frayed, n = 8 corresponds to the maximal helicity, and
the conformation can be considered completely helical. The homo-alanine is thus in an
ideal helical structure at T" = 200 K. Around the room temperature, the homo-alanine

20



X Ala(Gas) ——
e . Ala(Sol) -~

34
3
XXX}KXJ {E

+ x *
2 ,—$$$$$$ x * 4 u

O 1 1 1 1 1 1 1 1 1
200 250 300 350 400 450 500 550 600 650 700

T (K)

Figure 6: Specific heat C' as a function of temperature 7" for (Ala);g in gas phase and
in aqueous solution. The values for each case were calculated from one multicanonical
production run of 1,000,000 MC sweeps by the single-histogram reweighting techniques.

is still substantially helical (= 70 % helicity). This is consistent with the experimental
fact that alanine is a strong helix former. We observe that < n > is 5 (50 % helicity) at
the transition temperature obtained from the peak in specific heat (around 340 K). This
implies that the peak in specific heat indeed implies a helix-coil transition between an
ideal helix and a random coil.

The next example is a penta peptide, Met-enkephalin, whose amino-acid sequence is:
Tyr-Gly-Gly-Phe-Met. Since this is one of the simplest peptides with biological functions,
it served as a bench mark system for many simulations.

Here, we present the latest results of a multicanonical MC simulation of Met-enkephalin
in gas phase [39]. The conformations were classified into six groups of similar structures
according to their intrachain hydrogen bonds. In Figure 8 we show the lowest-energy
conformations in each group identified by the MUCA simulation. The lowest-energy con-
formation of group C25 (Figure 8(a)) has two hydrogen bonds, connecting residues 2
and 5, and forms a type II' f-turn. The ECEPP/2 energy of the conformation is —12.2
kcal/mol, and this conformation corresponds to the global-minimum-energy state of Met-
enkephalin in gas phase. The conformation is essentially identical with those found by
others [132, 133]. The lowest-energy conformation of group C14 (Figure 8(b)) has two
hydrogen bonds, connecting residues 1 and 4, and forms a type II g-turn. The energy
is —11.1 kcal/mol, and this conformation corresponds to the second-lowest-energy state.
Other groups correspond to high-energy states.

We now study the distributions of conformations in these groups as a function of
temperature. The results are shown in Figure 9. As can be seen in the Figure, group
(25 is dominant at low temperatures. Conformations of group C14 start to appear from
T ~ 100 K. At T ~ 300 K, the distributions of these two groups, C25 and C14, balance
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Figure 7: Average helicity < n >7 as a function of temperature T for (Ala)ig, (Val)io,
and (Gly)yo in aqueous solution. The values for each case were calculated from one mul-
ticanonical production run of 1,000,000 MC sweeps by the single-histogram reweighting
techniques.

( =~ 25 % each) and constitute the main groups. Above T ~ 300 K, the contributions of
other groups become non-negligible (those of group C24 and group C13 are about 10 %
and 8 %, respectively, at T = 400 K). Note that the distribution of conformations that do
not belong to any of the six groups monotonically increases as the temperature is raised.
This is because random-coil conformations without any intrachain hydrogen bonds are
favored at high temperatures.

The same peptide in gas phase was studied by the replica-exchange MD simulation
[82]. We made an MD simulation of 2 x 10° time steps (or, 1.0 ns) for each replica,
starting from an extended conformation. We used the following eight temperatures: 700,
585, 489, 409, 342, 286, 239, and 200 K, which are distributed exponentially, following
the annealing schedule of simulated annealing simulations [101]. As is shown below, this
choice already gave an optimal temperature distribution. The replica exchange was tried
every 10 fs, and the data were stored just before the replica exchange for later analyses.

As for expectation values of physical quantities at various temperatures, we used the
multiple-histogram reweighting techniques of Egs. (30) and (31). We remark that for
biomolecular systems the integrated autocorrelation times 7, in the reweighting formulae
(see Eq. (30)) can safely be set to be a constant [3], and we do so throughout the analyses
in this section.

For an optimal performance of REM simulations the acceptance ratios of replica ex-
change should be sufficiently uniform and large (say, > 10 %). In Table 1 we list these
quantities. The values are indeed uniform (all about 15 % of acceptance probability) and
large enough (more than 10 %).

The results in Table 1 imply that one should observe a free random walk in temperature
space. The results for one of the replicas are shown in Figure 10(a). We do observe a
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Figure 8: The lowest-energy conformations of Met-enkephalin in each group obtained
by the multicanonical MC simulation of 1,000,000 MC sweeps. These conformations
correspond to groups (a) C25, (b) Cl14, (c) C24, (d) C13, (e) C15, and (f) C35. The
figures were created with RasMol [131].
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Figure 9: The distributions of each group of similar structures of Met-enkephalin in gas
phase as a function of temperature.

Table 1: Acceptance Ratios of Replica Exchange Corresponding to Pairs of Neighboring
Temperatures

Pair of Temperatures (K) Acceptance Ratio

200 «— 239 0.160
239 «—— 286 0.149
286 «—— 342 0.143
342 «—— 409 0.139
409 «—— 489 0.142
489 «—— 585 0.146
985 «— 700 0.146
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random walk in temperature space between the lowest and highest temperatures. In
Figure 10(b) the corresponding time series of the total potential energy is shown. We see
that a random walk in potential energy space between low and high energies is realized.
We remark that the potential energy here is that of AMBER in Ref. [117]. Note that
there is a strong correlation between the behaviors in Figures 10(a) and 10(b).
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Figure 10: Time series of (a) temperature exchange and (b) the total potential energy
for one of the replicas from a replica-exchange MD simulation of Met-enkephalin in gas
phase.

In Figure 11 the canonical probability distributions obtained at the chosen eight tem-
peratures from the replica-exchange simulation are shown. We see that there are enough
overlaps between all pairs of distributions, indicating that there will be sufficient numbers
of replica exchanges between pairs of replicas (see Table 1).

25



InP(E)

200 -150 -100 50 0 50 100
E (kcal/mol)

Figure 11: The canonical probability distributions of the total potential energy of Met-
enkephalin in gas phase obtained from the replica-exchange MD simulation at the eight
temperatures. The distributions correspond to the following temperatures (from left to
right): 200, 239, 286, 342, 409, 489, 585, and 700 K.
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We further compare the results of the replica-exchange simulation with those of a
single canonical MD simulation (of 1 ns) at the corresponding temperatures. In Figure 12
we compare the distributions of a pair of dihedral angles (¢,1)) of Gly-2 at two extreme
temperatures (7" = 200 K and 700 K). While the results at 7" = 200 K from the regular
canonical simulation are localized with only one dominant peak, those from the replica-
exchange simulation have several peaks (compare Figures 12(a) and 12(b)). Hence, the
replica-exchange run samples much broader configurational space than the conventional
canonical run at low temperatures. The results at 7' = 700 K (Figures 12(c) and 12(d)),
on the other hand, are similar, implying that a regular canonical simulation can give
accurate thermodynamic quantities at high temperatures.
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Figure 12: Distributions of a pair of dihedral angles (¢, ) of Gly-2 for: (a) T' = 200 K
from a regular canonical MD simulation, (b) 7" = 200 K from the replica-exchange MD
simulation, (¢) T'= 700 K from a regular canonical MD simulation, and (d) 7" = 700 K
from the replica-exchange MD simulation.

In Figure 13 we show the average total potential energy as a function of temperature.
As expected from the results of Figure 12, we observe that the canonical simulations at low
temperatures got trapped in states of energy local minima, resulting in the discrepancies
in average values between the results from the canonical simulations and those from the
replica-exchange simulation.

We now present the results of MD simulations based on replica-exchange multicanon-
ical algorithm and multicanonical replica-exchange method [94]. The Met-enkephalin
in gas phase was studied again. The potential energy is, however, that of AMBER in
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Figure 13: Average total potential energy of Met-enkephalin in gas phase as a function of
temperature. The solid curve is the result from the replica-exchange MD simulation and
the dots are those of regular canonical MD simulations.

Ref. [118] instead of Ref. [117]. In Table 2 we summarize the parameters of the simu-
lations that were performed. As discussed in the previous section, REMUCA consists
of two simulations: a short REM simulation (from which the density of states of the
system, or the multicanonical weight factor, is determined) and a subsequent production
run of MUCA simulation. The former simulation is referred to as REM1 and the latter
as MUCAT1 in Table 2. A production run of MUCAREM simulation is referred to as
MUCAREM1 in Table 2, and it uses the same density of states that was obtained from
REMI1. Finally, a production run of the original REM simulation was also performed for
comparison and it is referred to as REM2 in Table 2. The total simulation time for the
three production runs (REM2, MUCA1, and MUCAREM1) was all set equal (i.e., 5 ns).

Table 2: Summary of Parameters in REM, REMUCA, and MUCAREM Simulations

Run No. of Replicas, M Temperature, T, (K) (m=1,---, M) MD Steps
REM1 10 200, 239, 286, 342, 409, 2 % 10°
489, 585, 700, 836, 1000
REM?2 10 200, 239, 286, 342, 409, 1 % 106
489, 585, 700, 836, 1000
MUCA1 1 1000 1 x 107
MUCAREM1 4 375, 525, 725, 1000 2.5 x 106

After the simulation of REM1 is finished, we obtained the density of states, n(E),
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by the multiple-histogram reweighting techniques of Eqs. (30) and (31). The density of

states will give the average values of the potential energy from Eq. (20), and we found
E, = < FE >p=-30kcal/mol , (59)
Ey = < E >p,= 195 kcal/mol .

Then our estimate of the density of states is reliable in the range £y < F < E);. The
multicanonical potential energy £{% (E) was thus determined for the three energy regions
(F < Ey, By < E < Ey, and E > Ey) from Eq. (49). Namely, the multicanonical
potential energy, E,...(E;Tp), in Eq. (9) and its derivative, %&EE%), were determined by
fitting Inn(F) by cubic spline functions in the energy region of (—30 < E < 195 kcal/mol)
[94]. Here, we have set the arbitrary reference temperature to be Ty = 1000 K. Outside
this energy region, F,,,(F;Ty) was linearly extrapolated as in Eq. (49).

After determining the multicanonical weight factor, we carried out a multicanonical
MD simulation of 1 x 107 steps (or 5 ns) for data collection (MUCAT1 in Table 2). In
Figure 14 the probability distribution obtained by MUCAL is plotted. It can be seen that
a good flat distribution is obtained in the energy region F; < E < E);. In Figure 14
the canonical probability distributions that were obtained by the reweighting techniques
at T'=T; =200 K and T' = Ty = 1000 K are also shown (these results are essentially
identical to one another among MUCA1, MUCAREM1, and REM2, as discussed below).
Comparing these curves with those of MUCAT1 in the energy regions £ < F; and E > Ey,
in Figure 14, we confirm our claim in the previous section that MUCA1 gives canonical
distributions at T = T} for E < E; and at T = Ty, for E > FE);, whereas it gives a
multicanonical distribution for E; < E < E,,.

InP(E)
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Figure 14: Probability distribution of potential energy of Met-enkephalin in gas phase
that was obtained from MUCAL1 (see Table 2). The dotted curves are the probability
distributions of the reweighted canonical ensemble at 7" = 200 K (left) and 1000 K (right).
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In the previous works of multicanonical simulations of Met-enkephalin in gas phase
(see, for instance, Refs. [15, 39]), at least several iterations of trial simulations were re-
quired for the multicanonical weight determination. We emphasize that in the present
case of REMUCA (REM1), only one simulation was necessary to determine the optimal
multicanonical weight factor that can cover the energy region corresponding to tempera-
tures between 200 K and 1000 K.

From the density of states obtained by REMUCA (i.e., REM1), we prepared the mul-
ticanonical weight factors (or the multicanonical potential energies) for the MUCAREM
simulation (see Eq. (53)). The parameters of MUCAREMI, such as energy bounds Eim}
and EI{{m} (m =1,---, M) are listed in Table 3. The choices of TL{m} and T,E,’”} are, in
general, arbitrary, but significant overlaps between the probability distributions of adja-
cent replicas are necessary. The replica-exchange process in MUCAREM1 was tried every
200 time steps (or 100 fs). It is less frequent than in REM1 (or REM2). This is because
we wanted to ensure a sufficient time for system relaxation.

Table 3: Summary of Parameters in MUCAREM1

T (K) TV (K) T, (K) E™ (kcal/mol) ET™ (kcal/mol)

m

1 200 375 375 —30 20
2 300 525 525 ) 65
3 375 725 725 20 120
4 925 1000 1000 65 195

In Figure 15 the probability distributions of potential energy obtained by MUCAREM1
are shown. As expected, we observe that the probability distributions corresponding to
the temperature T,,, are essentially flat for the energy region Eim} <EL El{{m}, are of the
canonical simulation at T' = TL{m} for £ < Eim}, and are of the canonical simulation at
T= Tlgm} for £ > E}{{m} (m=1,---, M). As a result, each distribution in MUCAREM is
much broader than those in the conventional REM and a much smaller number of replicas
are required in MUCAREM than in REM (M = 4 in MUCAREM versus M = 10 in
REM).

In Figure 16 the time series of potential energy for the first 500 ps of REM2 (a),
MUCAT1 (b), and MUCAREM1 (c) are plotted. They all exhibit a random walk in po-
tential energy space, implying that they all perfomed properly as generalized-ensemble
algorithms. To check the validity of the canonical-ensemble expectation values calculated
by the new algorithms, we compare the average potential energy as a function of tempera-
ture in Figure 17. In REM2 and MUCAREM1 we used the multiple-histogram techniques
2, 3], whereas the single-histogram method [1] was used in MUCA1. We can see a perfect
coincidence of these quantities among REM2, MUCA1, and MUCAREM1 in Figure 17.

We now present the results of a replica-exchange simulated tempering MC simulation
of Met-enkephalin in gas phase [95]. The potential energy is again that of ECEPP /2 [97]-
[99]. In Table 4 we summarize the parameters of the simulations that were performed. As
described in the previous section, REST consists of two simulations: a short REM simu-
lation (from which the dimensionless Helmholtz free energy, or the simulated tempering
weight factor, is determined) and a subsequent ST production run. The former simulation
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Figure 15: Probability distributions of potential energy obtained from MUCAREM1 (see
Tables 2 and 3).

is referred to as REM1 and the latter as ST1 in Table 4. In REM1 there exist 8 replicas
with 8 different temperatures (M = 8), ranging from 50 K to 1000 K as listed in Table 4
(i.e., Ty = 50 K and Ty = Tg = 1000 K). The same set of temperatures were also used in
ST1. The temperatures were distributed exponentially between 77 and T}, following the
optimal distribution found in the previous simulated annealing schedule [101], simulated
tempering run [52], and replica-exchange simulation [82]. After estimating the weight
factor, we made a ST production run of 105 MC sweeps (ST1). In REM1 and ST1, a
replica exchange and a temperature update, respectively, were tried every 10 MC sweeps.

Table 4: Summary of Parameters in REST Simulations

Run  No. of Replicas, M Temperature, T, (K) (m=1,---, M) MC Sweeps
REM1 8 50, 77, 118, 181, 277, 425, 652, 1000 5 x 10°
ST1 1 50, 77, 118, 181, 277, 425, 652, 1000 1 x 109

We first check whether the replica-exchange simulation of REM1 indeed performed
properly. For an optimal performance of REM the acceptance ratios of replica exchange
should be sufficiently uniform and large (say, > 10 %). In Table 5 we list these quantities.
It is clear that both points are met in the sense that they are of the same order (the values
vary between 10 % and 40 %).

After determining the simulated tempering weight factor, we carried out a long ST
simulation for data collection (ST1 in Table 4). In Figure 18 the time series of temperature
and potential energy from ST1 are plotted. In Figure 18(a) we observe a random walk
in temperature space between the lowest and highest temperatures. In Figure 18(b) the
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Figure 17: The average potential energy of Met-enkephalin in gas phase as a function of
temperature. The solid, dotted, and dashed curves are obtained from REM2, MUCAI,
and MUCAREM]1, respectively (see Tables 2 and 3 for the parameters of the simulations).

Table 5: Acceptance Ratios of Replica Exchange in REM1 of Table 4

Pair of Temperatures (K) Acceptance Ratio

50 «— 77 0.30
77T «—— 118 0.27
118 «—— 181 0.22
181 «—— 277 0.17
277 «—— 425 0.10
425 —— 652 0.27

652 «—— 1000 0.40
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corresponding random walk of the total potential energy between low and high energies
is observed. Note that there is a strong correlation between the behaviors in Figures
18(a) and 18(b), as there should. It is known from our previous works that the global-
minimum-energy conformation for Met-enkephalin in gas phase has the ECEPP /2 energy
value of —12.2 kcal/mol [19, 39]. Hence, the random walk in Figure 18(b) indeed visited
the global-minimum region many times. It also visited high energy regions, judging from
the fact that the average potential energy is around 15 kcal/mol at T'= 1000 K [15, 39|
(see also Figure 19 below).
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Figure 18: Time series of (a) temperature and (b) potential energy in ST1 (see Table 4
for the parameters of the simulation).

For an optimal performance of ST, the acceptance ratios of temperature update should
be sufficiently uniform and large. In Table 6 we list these quantities. It is clear that both
points are met (the values vary between 26 % and 57 %); we find that the present ST run
(ST1) indeed properly performed. We remark that the acceptance ratios in Table 6 are
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significantly larger and more uniform than those in Table 5, suggesting that ST runs can
sample the configurational space more effectively than REM runs, provided the optimal
weight factor is obtained.

Table 6: Acceptance Ratios of Temperature Update in ST1

Pair of Temperatures (K) Acceptance Ratio

50 — 77 0.47

7 — 50 0.47
T — 118 0.43
118 — 77 0.43
118 — 181 0.37
181 — 118 0.42
181 — 277 0.29
277 — 181 0.29
277 — 425 0.30
425 — 277 0.26
425 — 652 0.43
652 — 425 0.42
652 — 1000 0.57
1000 — 652 0.56

We remark that the details of Monte Carlo versions of REMUCA and MUCAREM
have also been worked out and tested with Met-enkephalin in gas phase [134]. Here in Fig-
ure 19, we just show the average ECEPP /2 potential energy as a function of temperature
that was calculated from the four generalized-ensemble algorithms, MUCA, REMUCA,
MUCAREM, and REST [134]. The results are in good agreement.

We have so far presented the results of generalized-ensemble simulations of Met-
enkephalin in gas phase. However, peptides and proteins are usually in aqueous solution.
We therefore want to incorporate rigorous solvation effects in our simulations in order to
compare with experiments.

Our first example with rigorous solvent effects is a multicanonical MC simulation,
where the solvation term was included by the RISM theory [45]. While low-energy con-
formations of Met-enkephalin in gas phase are compact and form [-turn structures [39],
it turned out that those in aqueous solution are extended. In Figure 20 we show the
lowest-energy conformations of Met-enkephalin obtained during the multicanonical MC
simulation with RISM theory incorporated [45]. They exhibit characteristics of almost
fully extended backbone structure with large side-chain fluctuations. The results are in
accord with the observations in NMR experiments, which also suggest extended confor-
mations [135].

We also calculated an average of the end-to-end distance of Met-enkephalin as a func-
tion of temperature. The results in aqueous solution (the present simulation) and in the
gas phase (a previous simulation [39]) are compared in Figure 21. The end-to-end distance
in aqueous solution at all temperatures varies little (around 12 A); the conformations are
extended in the entire temperature range. On the other hand, in the gas phase, the
end-to-end distance is small at low temperatures due to intrachain hydrogen bonds, while
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Figure 19: The average potential energy of Met-enkephalin in gas phase as a function
of temperature. The results from the four generalized-ensemble algorithms, MUCA, RE-
MUCA, MUCAREM, and REST, are superimposed.
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Figure 20: Superposition of eight representative low-energy conformations of Met-
enkephalin obtained by the multicanonical MC simulation in aqueous solution based on
RISM. The figure was created with RasMol [131].
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the distance is large at high temperatures, because these intrachain hydrogen bonds are
broken.
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Figure 21: Average end-to-end distance of Met-enkephalin in aqueous solution (SOL) and
in gas phase (GAS) as a function of temperature. Here, the end-to-end distance is defined
as the distance between the nitrogen atom at the N terminus and the oxygen atom at the
C terminus.

The same peptide was also studied by MD simulations of replica-exchange and other
generalized-ensemble simulations in aqueous solution based on TIP3P water model [136].
Two AMBER force fields [118, 119] were used. The number of water molecules was 526
and they were placed in a sphere of radius of 16 A. The initial configuration is shown in
Figure 22.

In Figure 23 the canonical probability distributions obtained at the 24 temperatures
from the replica-exchange simulation are shown. We see that there are enough overlaps
between all pairs of distributions, indicating that there will be sufficient numbers of replica
exchanges between pairs of replicas. The corresponding time series of the total potential
energy for one of the replicas is shown in Figure 24. We do observe a random walk in
potential energy space, which covers an energy range of as much as 2,000 kcal /mol.

Finally, the average end-to-end distance as a function of temperature was calculated
by the multiple-histogram reweighting techniques of Egs. (30) and (31). The results both
in gas phase and in aqueous solution are shown in Figure 25. The results are in good
agreement with those of ECEPP/2 energy plus RISM solvation theory [45] in the sense
that Met-enkephalin is compact at low temperatures and extended at high temperatures
in gas phase and extended in the entire temperature range in aqueous solution (compare
Figures 21 and 25).
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Figure 22: Initial configuration of replica-exchange MD simulations of Met-enkephalin in
aqueous solution with 526 TIP3P water molecules.
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Figure 23: The canonical probability distributions of the total potential energy of Met-

enkephalin in aqueous solution obtained from the replica-exchange MD simulation at the
24 temperatures.
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Figure 24: Time series of the total potential energy of Met-enkephalin in aqueous solution
obtained for one of the replicas from the replica-exchange MD simulation. Corresponding
times series in the canonical ensemble at temperatures 250 K and 500 K are also shown.
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Figure 25: Average end-to-end distance of Met-enkephalin (a) in gas phase and (b) in
aqueous solution as a function of temperature.
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4 CONCLUSIONS

In this article we have reviewed uses of generalized-ensemble algorithms in molecular
simulations of biomolecules. A simulation in generalized ensemble realizes a random walk
in potential energy space, alleviating the multiple-minima problem that is a common
difficulty in simulations of complex systems with many degrees of freedom.

Detailed formulations of the three well-known generalized-ensemble algorithms, namely,
multicaonical algorithm (MUCA), simulated tempering (ST), and replica-exchange method
(REM), were given. We then introduced three new generalized-ensemble algorithms that
combine the merits of the above three methods, which we refer to as replica-exchange mul-
ticanonical algorithm (REMUCA), replica-exchange simulated tempering (REST), and
multicanonical replica-exchange method (MUCAREM).

With these new methods available, we believe that we now have working simulation
algorithms which we can use for conformational predictions of peptides and proteins from
the first principles, using the information of their amino-acid sequence only. It is now
high time that we addressed the question of the validity of the standard potential en-
ergy functions such as AMBER, CHARMM, GROMOS, ECEPP, etc. For this purpose,
conventional simulations in the canonical ensemble are of little use because they will nec-
essarily get trapped in states of local-minmum-energy states. It is therefore essential to
use generalized-ensemble algorithms in order to test and develop accurate potential en-
ergy functions for biomolecular systems. Some preliminary results of comparisons among
ECEPP/2 and different versions of AMBER force fields were given in the present arti-
cle. We remark that more detailed analyses that compare different versions of AMBER
by multicanonical MD simulations already exist [137]. Likewise, the validity of solvation
theories should also be tested. For this, RISM theory [109]-[111] can be very useful. For
instance, we have successfully given a molecular mechanism of secondary structural tran-
sitions in peptides due to addition of alcohol to solvent [138], which is very difficult to
attain by regular molecular simulations.
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